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Fluorescence molecular tomography (FMT) is a fast-developing optical imaging modality
that has great potential in early diagnosis of disease and drugs development. However, recon-
struction algorithms have to address a highly ill-posed problem to ful¯ll 3D reconstruction in
FMT. In this contribution, we propose an e±cient iterative algorithm to solve the large-scale
reconstruction problem, in which the sparsity of °uorescent targets is taken as useful a priori
information in designing the reconstruction algorithm. In the implementation, a fast sparse
approximation scheme combined with a stage-wise learning strategy enable the algorithm to deal
with the ill-posed inverse problem at reduced computational costs. We validate the proposed fast
iterative method with numerical simulation on a digital mouse model. Experimental results
demonstrate that our method is robust for di®erent ¯nite element meshes and di®erent Poisson
noise levels.

Keywords: Fluorescence molecular tomography; sparse regularization; reconstruction algorithm;
least absolute shrinkage and selection operator.

1. Introduction

Fluorescence molecular tomography (FMT) is a prom-
ising imaging modality that allows detailed investi-
gations of biological processes, disease progression,

and response to therapy at a molecular level within

small animals. Compared with plane °uorescence

imaging, FMT provides more quantitative and

accurate information of spatial location and strength
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of °uorescent sources (usually °uorescent probe
tagging the molecule of interest). It has recently
gained much attention in the ¯eld of pre-clinical
studies, such as drug development, early cancer
detection and cell-based therapy.1–6

Methodologies or schema for quantitative image
reconstruction is the key to the further advance-
ment of FMT. In this paper, we focus on the inverse
problem of FMT based on continuous wave °uor-
escence measurements, i.e., recovery of the 3D dis-
tribution of the interior °uorescent source from
measurements at the tissue surface based on a
photons propagating model.

Due to highdegrees of absorption and scattering of
photons propagating through biological tissue, the
inverse problem of FMT is inherently illposed. Con-
sequently, various regularization strategies become
indispensable for the inverse algorithm to obtain
stable solution.7–9 In addition, a priori knowledge
regarding solution is usually incorporated into image
reconstruction to play an important role in improv-
ing the solution quality, e.g., anatomical infor-
mation,10–12 local smoothness,13 or sparsity.14,15

To solve the inverse problem, prior knowledge
regarding the solution usually presents in the form
of a regularizer or a penalty term in the objective
function, such as Tikhonov regularization, l1 regu-
larization and total variation (TV) regularization.
Typically, the biological mechanisms are locally
concentrated within speci¯c areas of interest, which
means the °uorescence-labeled targets present a
sparse distribution in the volume or the solutions
only have a few nonzero coe±cients. The l1 norm is
a widely used sparsity-inducing norm and recent
researches have witnessed that l1 regularization is a
preferable choice for sparse images reconstruction of
FMT.16–22

In this contribution, the inverse problem of FMT
is formulated into a least absolute shrinkage and
selection operator (LASSO) problem by l1 regular-
ization and a fast iterative algorithm is developed to
reconstruct the °uorophore distribution. Simu-
lations on 3D digital mouse model are performed to
evaluate the proposed method.

2. Method

2.1. Inverse model

In continuous wave FMT, the distribution of the
°uorophore is recovered from the steady state

surface measurements. With the di®usion approxi-
mation, the photons propagation through tissue can
be described by a set of coupled partial di®erential
equations.19–22 By solving the di®usion equation
numerically using the ¯nite elements method,23–25

we can build a linear relationship between the
unknown °uorescence target x and the measured
surface °uorescence data b:

Ax ¼ b; ð1Þ
where A 2 Rm�n is the system matrix. Typically,
A for FMT is a large size rank-de¯cient matrix,
therefore constraints are necessary to distinguish
the meaningful solution from an in¯nite number of
solutions. We take the sparsity as a constraint and
formulate the inverse problem of FMT into an
l1-norm regularized optimization problem:

min
X

fLðxÞ ¼ Ax� bk k2 þ � xk k1g: ð2Þ

The problem in (2) is a LASSO problem,26 also
known as basis pursuit.27 We proposed an e±cient
iterative algorithm for solving such optimization
problem in (2),28 which will be referred to as
stagewise fast LASSO (SwF-LASSO) in the fol-
lowing section. Here, SwF-LASSO is used to solve
the convex optimization problem for FMT.

2.2. Stagewise fast LASSO

Obviously, the objective function in (2) is convex
but not di®erentiable. We de¯ne some notations
to simplify the objective function. Let the residual
vector be rðxÞ ¼ Ax� b, where rðxÞ ¼ ðr1ðxÞ; . . . ;
rmðxÞÞT. Let ! ¼ ð!1; . . . ; !nÞT, !i ¼ f signðxiÞ; xi 6¼ 0

�i 2 f�1; 1g; xi ¼ 0
,

i ¼ 1; . . . ;n. De¯ne the sign vector sðxÞ ¼
ðs1ðxÞ; . . . ; smðxÞÞT by

siðxÞ ¼
1 0 < riðxÞ < 1
�1 �1 < riðxÞ < 0

0 otherwise

8<
: : ð3Þ

Then the objective function can be reformulated
into

min
X

fLðxÞ ¼ xTATAx� 2ððAÞTb� �!T=2Þxg:
ð4Þ

By setting the deviation of (4) to zero, it is easy to
derive the solution of (2) that takes the form of:

x̂ ¼ ðATAÞ�1ðATb� �!=2Þ: ð5Þ
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However, the solution cannot be determined
directly with (5) because ! depends on x. Moreover,
the matrix inversion in (5) is a time-consuming
operation for a large-size system matrix A. To avoid
matrix inversion, we employ a greedy scheme to
solve (4) e±ciently, which is inspired by the fast
sparse approximation for least squares support
vector machine.29,30 In the implementation, we
regard matrix A as a basis function dictionary, i.e.,
A ¼ ½a1; a2; . . . ; an� is the m� n dictionary. Two
index sets, S and P , are used in the proposed
algorithm. The algorithm works by initializing index
set P empty and S ¼ f1; 2; . . . ;ng. SwF-LASSO
iteratively builds the decision function by adding
several basis functions (columns of A) and updates
the parameters until the given stopping criterion is
satis¯ed. Once some basis functions are picked from
the dictionary A, the corresponding indices will be
eliminated from S and added to set P .

We assume that the index set P contains np

elements at the nth iteration, which means np basis
functions or columns of A have been selected to
form am� np sub-matrix of A, denoted by AP . The
components of x corresponding to AP are denoted
by vector xP and the other components are set to
zero. Let us now illustrate how to compute the
inverse matrix and update the solution iteratively.
Let Qn ¼ ðAT

PAP Þ�1. Given that other k basis
functions are selected at the (nþ 1)th iteration and
be ranged in a sub-matrix Ak. Then

Qnþ1 ¼ AT
P

AT
K

 !
ðAP AKÞ

 !�1

¼ AT
PAP AT

PAK

AT
KAP AT

KAK

 !�1

¼ Qnð Þ�1 AT
PAK

AT
KAP AT

KAK

 !�1

¼ Qn 0

0T 0

 !
þ �

�

�1

� �
ð�T � 1ÞðQnÞ�1; ð6Þ

where � ¼ QnAT
PAK , � ¼ ðAT

KAK �AT
KAP�Þ�1.

Combing with (5), the iterative formula for the
solution x is obtained accordingly

ðxnþ1Þ ¼ xnþ1
P

xnþ1
K

 !
¼ Qnþ1

AT
Pb� �!P=2

AT
Kb� �!K=2

 !

¼ Qn 0

0T 0

� �
AT

Pb� �!P=2

AT
Kb� �!K=2

 !

þ �
�

�1

� �
ð�T � 1Þ AT

P b� �!P=2

AT
Kb� �!K=2

 !

¼ xn
P

0

� �
þ ���

���

� �
; ð7Þ

where � ¼ �TðAT
Pb� �!P=2Þ �AT

Kbþ �!K=2.
In fact, the optimization problem in (4) is solved

with a greedy scheme, i.e., SwF-LASSO iteratively
builds the decision function by adding several basis
functions (columns of A). The criterion for selecting
basis functions is to maximize the descending in the
objective function caused by adding basis functions
to the model. For example, given i 2 S, �Lnþ1

i ¼
Lnþ1

i � Ln denotes the descent caused by adding
the ith basis function. Here,

�Lnþ1
i ¼ Lnþ1

i � Ln ¼ x2
i a

T
i ai þ 2xi

� ðaT
i AP xP Þ � bTai �

�

2
!i

� �� �
: ð8Þ

So the selection of basis functions is equivalent to
the following sub-problem:

min
xi

faT
i aix

2
i þ 2qni xig; ð9Þ

where

qni ¼ �ðbTai � �!i=2Þ n ¼ 0
aT
i AP xP � ðbTai � �!i=2Þ n > 0

�
: ð10Þ

It is easy to compute that the optimal solution of (9)
is

�Lnþ1
i ¼ �ðqni Þ2=aT

i ai: ð11Þ
To accelerate the convergence of the algorithm,

a stage-wise learning strategy is adopted to select
several basis functions at a time. The stage-wise size
is adaptively determined based on � threshold.
Speci¯cally, � threshold is computed by

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2S

ð�Lnþ1
i Þ2=jSj

r
; ð12Þ

where jSj represents the cardinality of index set S.
According to the stage-wise strategy, the basis
functions to be selected are the columns indexed by
the elements of

Knþ1 ¼ ij � > j�Lnþ1
i j > c � �; i 2 S

� �
; ð13Þ
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where j�Lnþ1
i j denotes the absolute value of

�Lnþ1
i . � and c are two positive constants and their

values control the stage-wise size. In the exper-
iments, c ranges from 1 to 3.

The iterations continue until one of the following
stopping criteria is met: (1) The index set S is empty;
(2) Knþ1 is empty; (3) jmaxi2Knþ1�Lnþ1

i j < ". If
algorithm stops at the kth iteration, then the sparse
solution of (2) can be approximated by xk.

The °owchart of StF-LASSO algorithm is illus-
trated in Fig. 1.

3. Experiments and Results

In this section, the performance of the presented
SwF-LASSO approach is experimentally veri¯ed
and is compared with IVTCG19 and StOMP.21 All
the experiments are performed on the same 3D
digital mouse model.31 We obtained anatomical
information from the mouse model of CT and
cryosection data, as shown in Fig. 2(a). The torso
section of the mouse atlas with a height of 35mm
is the volume to investigate. A total of 18 point
sources were placed around the surface for

excitation as shown in Fig. 2(b). The optical prop-
erties of di®erent main organs are listed in
Table 1.19

The measurements used in the numerical exper-
iments were obtained by solving the forward model
with FEM. To do this, the torso mouse model was
discretized into 24,906 nodes and 132,202 tetra-
hedral elements. But in the reconstruction process,
the mesh consisted of 2604 nodes and 12,376 tet-
rahedral elements, and the maximum and minimum
mesh sizes are 3.2 and 0.2mm, respectively. Swf-
Lasso, IVTCG and StOMP are separately employed
to solve the FMT inverse problem in (2). Recon-
struction performance was evaluated in terms of
location error, °uorescent yield and runtime. The
quantitative comparison is listed in Table 2.
Figure 3 shows the results of the above three
methods for single target reconstruction.

From Table 2, we can ¯nd that the presented
Swf-Lasso algorithm stand as a comparison with
StOMP and perform slightly better than IVTCG in
the single target setting. The source centers recon-
structed by the three methods are identical and the

Update      ,      ,  and      according to 
formula (6) and (7). 

                 Selecting basis function
According to formula (10), (11), and (12),

compute                  and the threshold   , 

and then determine the index set         of 

the selected basis functions.

{ }1n
i i S

L +

∈
∆ γ

1nK +

            or                          orS = Φ
1

1max
n

n
i

i K
L ε

+

+

∈
∆ < 1nK + = Φ

                    Initialization
n = 0, S = {1,2,      n}, P = Φ

End

1nQ + 1n
Px +

Update index set S and P 
1nS S K += − 1nP P K += +

1n n= +

Y

N
1n

Kx +

Fig. 1. Flowchart of StF-LASSO algorithm.

H

K

S

Li
T

Lu

M

(a) (b)

Fig. 2. (a) 3D digital mouse model consisting of heart (H),
lungs (Lu), muscle (M), liver (Li), kidneys (K), stomach (S),
muscle (M) and target (T). (b) A total of 18 excitation sources
placed around the surface at z ¼ 16:4mm plane.

Table 1. Optical properties for the main organs
region of 3D mouse model.

Material

�ax

(mm�1)

� 0
sx

(mm�1)

�am

(mm�1)

� 0
sm

(mm�1)

Heart 0.0083 1.01 0.0104 0.99
Lungs 0.0133 1.97 0.0203 1.95
Liver 0.0329 0.70 0.0176 0.65
Stomach 0.0114 1.74 0.0070 1.36
Kidneys 0.0660 2.25 0.0380 2.02
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Table 2. Result for single target reconstruction.

Method Position (mm) Location error (mm) Fluorescent yield (mm�1) Time (s)

SwF-LASSO 11.8,6.3,16.0 0.40 0.018 0.87
IVTCG 11.8,6.3,16.0 0.40 0.005 19.37
StOMP 11.8,6.3,16.0 0.40 0.026 0.82

(a) Swf-Lasso

(b) IVTCG

(c) StOMP

Fig. 3. Comparison of reconstruction results for single target, a red cylinder represents the actual source and the black region
means the position of reconstruction.
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location error is 0.40mm. In fact, the reconstructed
source center is also the nearest node to the actual
source, which means all the three algorithms locate
the target accurately. As for the computing time,
Swf-Lasso and StOMP run faster than IVTCG.

3.1. Reconstruction of double targets

In the case of double targets reconstruction, two
cylinder °uorescent targets of 1.6mm high by
0.8mm radius were set in the liver. The center of
these targets located in (11.9, 6.4, 16.4mm) and
(11.9, 10.9, 16.4mm), and the actual °uorescent
yield is 0.05mm�1. A total of 18 point sources were
placed around the surface for excitation. The com-
parisons of these methods are shown in Table 3 and
Fig. 4.

The quantitative results in Table 3 demonstrate
that our algorithm is better than the compared
methods. Although, SwF-LASSO runs slightly
slower than StOMP, it yields more accurate recon-
struction. The location errors for the two targets by
our method are 0.60 and 1.03mm, respectively. In

contrast, one of the reconstructed sources with
IVTCG and StOMP method deviated from the
actual target. Meanwhile, our proposed method
obtains satis¯ed °uorescent yield which is near the
actual value.

3.2. Stability analysis

In this part, three groups of experiments are pre-
sented to evaluate the robustness and stability of
our algorithm.

Firstly, we added di®erent levels (0%, 10%, 20%,
40%) of Poisson noise to boundary measurements.
We implemented 60 independent reconstructions
for each noise level. The impacts of noise on
reconstruction results are shown in Table 4.

As shown in Table 4, for all the noise levels
considered, the source locations are identical to that
of without noise. Furthermore, we ¯nd that the
reconstructed power varies very slightly with the
increase of noise level, and the maximum deviation
of the power occurs at 30% noise level, which pos-
sess a maximum 9.4% deviation to the actual power.

Table 3. Results for double targets reconstruction.

Method Position center (mm) Location error (mm) Fluorescent yield (mm�1) Time (s)

SwF-LASSO 11.7,10.4,16.5 0.60 0.045 0.95
11.1,6.8,16.9 1.03 0.037

IVTCG 11.7,10.4,16.5 0.60 0.018 24.66
10.3,5.3,16.4 1.26 0.010

StOMP 11.7,10.4,16.5 0.60 0.022 0.87
11.3,5.3,16.4 1.26 0.010

(a) Swf-Lasso

Fig. 4. Reconstruction results for double targets, two red cylinders represent the actual sources and the black region means the
position of reconstruction.
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As for location error, the proposed algorithm
obtained the same best results under di®erent noise
levels. From the view of °uorescent yield, the means
of results for di®erent noise levels have a slight
°uctuation. Therefore, we can make a conclusion
that our proposed method is robust for Poisson
noise.

Secondly, we changed di®erent meshes for
reconstruction to evaluate the stability of our
method. We utilized three di®erent meshes to

reconstruct single target separately, i.e., the model
were discretized into 1349 nodes and 6036 tetra-
hedral elements, 2604 nodes and 12,376 tetrahedral
elements, 3620 nodes and 17,504 tetrahedral
elements, respectively. We computed that the lo-
cation errors for the best point of these meshes were
1.14, 0.40, 1.22mm, respectively. Meanwhile, the
corresponding initial °uorescent yield on di®erent
meshes is 0.05mm�1. The experimental results on
di®erent meshes are shown in Table 5. It is
obviously shown in Table 5 that the points of our
reconstruction are the best points, respectively on
di®erent mesh levels. In conclusion, we can say that
our algorithm is stable for di®erent meshes.

At last, we reconstructed the single target on the
condition of decreasing excitation sources. Based on
the single target experiments, we decrease the
number of excitation sources from 18 to 12, 9 and 6,
separately. The results of this group experiments
are shown in Table 6.

(b) IVTCG

(c) StOMP

Fig. 4. (Continued)

Table 4. Impact of Poisson noise on the proposed method.

Noise level
Position

center (mm)
Location

error (mm)

Fluorescent

yield (mm�1)

0% 11.8,6.3,16.0 0.40 0:0182 � 0:0012
10% 11.8,6.3,16.0 0.40 0:0182 � 0:0010
20% 11.8,6.3,16.0 0.40 0:0183 � 0:0016
40% 11.8,6.3,16.0 0.40 0:0184 � 0:0021

Sparse reconstruction for FMT via a fast iterative algorithm

1450008-7

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
4.

07
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

03
.2

40
.1

26
.9

 o
n 

10
/2

1/
18

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



From Table 6, it is shown that we obtain satis¯ed
result in 18 excitation sources and 12 excitation
sources. However, when we decrease them to half or
one third of full number, the position of recon-
struction deviates from the best point. Moreover,
the °uorescent yield declines along with decreasing
excitation source.

4. Discussion and Conclusion

In this paper, we propose an e±cient reconstruction
algorithm for inverse problem of FMT. Considering
sparse distribution of °uorescent target in the
imaging domain, sparsity regularization is
employed to deal with the ill-posedness of tomo-
graphic °uorescence imaging problem. To solve the
l1-norm regularized objective functions e±ciently, a
fast iterative algorithm is developed to ¯nd stable
approximate solution. Numerical experiments with
3D digital mouse model verify that our proposed
algorithm is feasible, stable and e±cient.

With respect to quantitative indexes and visual
qualities of the experimental results, the proposed
SwF-LASSO algorithm performs comparable to
StOMP and better than the IVTCG in single target
reconstruction. Nevertheless, the presented algor-
ithm performs best in double targets reconstruction.
The stability tests further demonstrate that the
SwF-LASSO algorithm is stable and robust to
measure noise and mesh discretization. In addition,

SwF-LASSO yields satisfactory reconstruction
when we decrease the number of excitation source
from 18 to 12, but the results experience a notice-
able decline in quality when the number further
decreases. Consequently, the number of excitation
sources has a degree of impact on reconstruction
results.

In conclusion, the presented SwF-LASSO algor-
ithm is a stable and e±cient iterative algorithm for
tomographic °uorescence imaging problem, and the
in vivo evaluation will be reported in future.
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